Dougherty Valley HS Chemistry - AP Solutions – Concepts and Separation Techniques

Wor	ksheet	#1
	NSHEEL	$\boldsymbol{\pi}$

Name:		Period:	Seat#:
	r equation for each term an Honors Chem! If you don't		ne technique works. Some of back and review Honors!
1) Solute	2) Solvent	3) Solution	4) Homogeneous
5) Heterogeneous	6) Filtration	7) Decanting	8) Distillation
9) Volumetric Flask	10) Serial Dilution	11) Dissolving	12) Dissociating
13) Saturated	14) Unsaturated	15) Supersaturated	16) Electrolyte
17) Paper Chromatography	18) TLC Chromatog	graphy 19	O) Column Chromatography
20) Molarity (M)	21) Molality (m)	22) Mole Fraction (χ)	23) Weight Percent (%)

Conceptual Questions

24) W	hich of the following ionic compounds are insoluble
in	water? (Remember your solubility chart!) Explain
W	hat general "rule" from the chart gave you the clue
th	at it was insoluble.

KCI, AgNO₃, BaSO₄, (NH₄)₃PO₃

25) Match each solute with its most appropriate solvent. Explain why you matched them the way you did.

Solute: Table Salt (NaCl) Wax (C₃₁H₆₄₎

Solvent: Pentane (C₅H₁₂) Butanol (C₄H₉OH)

26) Which of these is NOT a solution? What is it instead? Explain/Define what it is since it isn't a solution. Clean air, Milk, Gatorade, Gold Alloy

27) Which of these is NOT an electrolyte? Why is it not an electrolyte but the others are? HCI, NaOH, NH₄Br, C₁₂H₂₂O₁₁

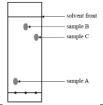
Separation Technique Questions – there are a few new ones mixed in! You can probably figure them out with common sense, otherwise look them up!

- 28) Can be used to separate a mixture of Fe and Cu fillings.
 - a) Magnetic separation
 - b) Crystallization
 - c) Evaporation
 - d) Distillation
- **31)** A method used to separate a mixture that comprises solutes that dissolve in the same solvent.
 - a) Evaporation
 - b) Filtration
 - c) Chromatography
 - d) Sublimation

- 29) Could be used to separate aqueous CuSO₄ from water.
 - a) Evaporation
 - b) Distillation
 - c) Chromatography
 - d) Decanting
- 32) Liquids that do not mix may be separated by using.
 - a) a separating funnel
 - b) an evaporating dish
 - c) Liebig condenser
 - d) a filter funnel

- **30)** Could be used to separate tea from loose tea leaves.
 - a) Chromatography
 - b) Decanting
 - c) Filtration
 - d) Crystallization
- **33)** What type of chromatography should you use if you want to collect a purified sample of one of the components?
 - a) Paper
 - b) Thin Layer
 - c) Column

34) What separation technique is shown below?



35) The diagram shows the apparatus for separating solid and water. What are the labelled parts?

36) The thin layer chromatography plate shown

below has a polar stationary phase. It was developed using hexane as the solvent. Which sample is the most polar?

37) Which two would be most easily separated via distillation?

Boiling Pts:

 $1 = 30^{\circ}$ C

 $2 = 60^{\circ}$ C

 $3 = 120^{\circ}C$

4 = 110°C

- **38)** The process of evaporating a liquid and then condensing the vapor by cooling it is known as
 - a) filtration
 - b) chromatography
 - c) decanting
 - d) distillation

- **39)** Chromatography separates chemicals based on differences in
 - a) mass
 - b) polarity
 - c) boiling point
 - d) particle size
- **40)** Describe three common lab errors that often occur during the filtering process. Explain whether each error would lead to a higher or lower % yield.
- **41)** Very helpful chromatography video to watch. Please watch! http://tinyurl.com/3r33yuyc

